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Medical Image Quality Assessment (IQA) plays an important role in assisting and evaluating the
development of any new hardware, imaging sequences, pre-processing or post-processing algorithms. We
have performed a quantitative analysis of the correlation between subjective and objective Full Reference -
IQA (FR-IQA) onMagnetic Resonance (MR) images of the human brain, spine, knee and abdomen. We have
created a MR image database that consists of 25 original reference images and 750 distorted images. The
reference images were distorted with six types of distortions: Rician Noise, GaussianWhite Noise, Gaussian
Blur, DCT compression, JPEG compression and JPEG2000 compression, at various levels of distortion.
Twenty eight subjects were chosen to evaluate the images resulting in a total of 21,700 human evaluations.
The raw scores were then converted to Difference Mean Opinion Score (DMOS). Thirteen objective FR-IQA
metrics were used to determine the validity of the subjective DMOS. The results indicate a high correlation
between the subjective and objective assessment of the MR images. The Noise Quality Measurement
(NQM) has the highest correlation with DMOS, where the mean Pearson Linear Correlation Coefficient
(PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are 0.936 and 0.938 respectively. The
Universal Quality Index (UQI) has the lowest correlation with DMOS, where the mean PLCC and SROCC are
0.807 and 0.815 respectively. Student's T-test was used to find the difference in performance of FR-IQA
across different types of distortion. The superior IQAs tested statistically are UQI for Rician noise images,
Visual Information Fidelity (VIF) for Gaussian blur images, NQM for both DCT and JPEG compressed images,
Peak Signal-to-Noise Ratio (PSNR) for JPEG2000 compressed images.
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1. Introduction

Image quality assessment can be categorized into two types,
namely subjective and objective assessments. Subjective assessment
is the ratings given by human subjects based on their judgment on
the image quality. Subjective assessment is always regarded as the
gold standard in the image quality assessment for MR images.
Objective assessment is an alternative method defined mathemat-
ically. It can be divided into three types: Full Reference - Image
Quality Assessment (FR-IQA), Reduced Reference - Image Quality
Assessment (RR-IQA) and No Reference/Blind Image - Quality
Assessment (NR-IQA) [1,2]. FR-IQA calculates an image quality
score relative to a reference image. The reference image is usually a
perfect image without any distortion. RR-IQA uses partial informa-
tion from the reference image to calculate the image quality score of
the distorted image. NR-IQA calculates the image quality score
without using reference image. Since the reference image is usually
unavailable in medical images, NR-IQA is more feasible than the
other two methods.

Several researchers have performed objective FR-IQA [1,3,4] and
NR-IQA [5–7] evaluation on MR images. Gulame et al. evaluated MR
images distorted with speckle noise using distance basedmetrics [1].
They found that Manhattan, Bray–Curtis and Cosine Correlation
Distance measured the MR images better than the Euclidean,
Chebyshev and Canberra Distance. However, their study only focuses
onMR images distortedwith speckle noise. R. Kumar et al. analyzed a
variety of quality metrics for MRI, X-ray and ultrasound images,
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which include Mean Squared Error (MSE), Structural Similarity
Index (SSIM), Peak Signal-to-Noise (PSNR), Maximum difference
(MD), etc. [3]. They distorted the MR images with different levels of
blur, noise, compression and contrast levels. They found that SSIM
can evaluate the image quality regardless of the type of distortion,
and it outperformed all the other metrics analyzed in their study.
However, the computational time for SSIM is large.

B. Kumar et al. performed the subjective FR-IQA on MR images.
They evaluated the performance of PSNR and SSIM on compressed
medical images using MOS [4]. From their study, it was found that
the MOS values vary according to the type of image compression.
They concluded that MOS values correlate better with PSNR than
with SSIM for all compression schemes. Prieto et al. performed a
study on subjective assessment based on Just Noticeable Differences
(JND). They proposed JND scanning (JNDS) to evaluate reconstructed
MR images [8]. They also measured the image quality using Root
Mean Square Error (RMSE). The JNDS metric was validated by using
subjective MOS values obtained from five observers. The result
showed that JNDS has a better correlation with the subjective MOS
than that with RMSE. Both of these studies used the subjective MOS
as a standard benchmark to evaluate the performance of the
objective assessment.

The main goal of IQA is to model an ideal objective assessment
metric that is very close to the human evaluation [9]. To achieve this
goal, several researchers performed experiments on the subjective
assessment and produced database of natural images, namely
Laboratory for Image and Video Engineering (LIVE) [9], Categorical
Subjective Image Quality (CSIQ) [10], Cornell A57 [11], IVC [12],
Toyoma-MICT [13], TID2008 [14], and TID2013 [15]. Themost widely
used database for IQA study is LIVE, which contains 779 distorted
natural scene images [9]. The reference images were distorted by
JPEG2000 compression, JPEG compression, White Gaussian noise
(WGN), Gaussian blur (GB), or Simulated Fast Fading Rayleigh
channel. All these images were evaluated by 24 human subjects
and the ratings were represented with Difference Mean Opinion
Score (DMOS). The rest of the databases also contain few hundreds
of distorted natural scene images, which were distorted by a few
types of distortion, and evaluated by a number of human subjects.
The subjective scores were presented in either MOS [11–15] or
DMOS [9,10].

In this work, we create a database of MR images containing six
types of distortion that may possibly occur during imaging and
storing. There are a total of 775 MR images consisting of 750
distorted images derived from 25 reference images. The MR images
were evaluated by 28 human subjects, and the ratings were
converted to DMOS. The DMOS values are compared with thirteen
FR-IQA metrics: SNR, PSNR, SSIM, Multiscale SSIM (MS-SSIM),
Feature SIMilarity (FSIM), Information Fidelity Criterion (IFC),
Noise Quality Measurement (NQM), Weighted SNR (WSNR), Visual
Information Fidelity (VIF), Pixel Visual Information Fidelity (VIFP),
Universal Quality Index (UQI), Information Weighted PSNR
(IW-PSNR) and Information Weighted SSIM (IW-SSIM). We used
Pearson Linear Correlation Coefficient (PLCC), Spearman Rank Order
Correlation Coefficient (SROCC), Kendall Rank Order Correlation
Coefficient (KROCC) and RMSE to validate the correlation between
the DMOS and all the FR-IQA used here.

2. Methodology

2.1. MR Images

Twenty five good quality MR images were chosen from two
sources of online database: Osirix DICOM Viewer MRI database [16]
and Alzheimer's Disease Neuroimaging Initiative (ADNI) MRI
database (adni.loni.usc.edu) [17]. The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year public-
private partnership.

Fig. 1 shows the original MR images which consist of images
from the brain, abdomen (gastroenterology), spine and knee. They
are T1Weighted (T1W), T2Weighted (T2W), or Proton Density (PD)
images. These images are used as reference images in our study.
All the MR images are in gray scale. They were normalized between
0 and 255 for the ease of applying the same level of distortion for
all reference images. The image pixels are written below each
image, respectively.

2.2. Image distortion

The reference images were distorted using six types of distortion
each at five different levels as summarized in Table 1. Five different
levels were used in order to predict the change in the image quality
as the intensity of distortion is worsening. It is a random choice of
five levels; however, it would make up a comparable amount of
distorted images as performed by other similar studies using natural
images [9]. Rician Noise, Gaussian White Noise, Gaussian blur,
Discrete Cosine Transform (DCT), JPEG Compression and JPEG2000
Compression are chosen because they are common in majority MR
images. If the SNR of the MR images is greater than 2, the images are
subjected to Gaussian Noise; whereas, if the SNR is lower than 2, the
images are subjected to Rician Noise [18]. MR images are subjected
to Gaussian Blur when it is exposed to the atmosphere for a long time
[19,20]. DCT, JPEG and JPEG2000 compressions are common
techniques used to compress a wide range of MRI information
[21–26]. All these distortion except the Rician noise, are commonly
used by the other similar studies of subjective assessment for natural
images [9–15].

2.3. Subjective evaluation

The subjective evaluation was done by following the procedures
recommended by Rec. ITU-R BT.500-11 [27]. The evaluation was
performed in an office environment with normal indoor illumination
level. 24-in LEDmonitor with a resolution of 1920 × 1080 pixels was
used for the subjective evaluation. We have selected twenty eight
human subjects (15 male, 13 female) with normal vision to evaluate
the MR images. They are research scholars from Electrical Engineer-
ing department, aged between 20 and 35 years. The subjects were
screened for near visual acuity using Snellen Chart. During the vision
test, the subjects were asked to sit at a distance of 760 mm from the
Snellen Chart. Evaluation was done by using Simultaneous Double
Stimulus for Continuous Evaluation (SDSCE) methodology [27],
where two images are displayed on the monitor screen side by side.
The left image is always the reference image, and the right image is
the distorted image for evaluation. Each subject rates the distorted
image by judging the differences between the two images on the
screen. We notice that they can evaluate fairly when the reference
image is displayed beside the distorted image. The subject selects
Excellent, Good, Fair, Poor or Bad. The numerical scores that
represent each rating are 90, 70, 50, 30 and 10 respectively. These
scores were not disclosed to the subjects in order to avoid bias by the
subjects [28]. Wajid et al. also used similar rating scores in their
study for investigating the similarity between psychophysical
experiment and LIVE image quality database [29].

Written instructions about the evaluation procedures were given
to each subject prior to evaluation of the MR images. Then, a
demonstration session was conducted with a few examples of
distorted images corresponding to a recommended quality rating. A



Fig. 1. Twenty five reference MR images used in this study. The image size in pixels is written below each image. The images are complimentary shared by online database from
(a) http://adni.loni.usc.edu and (b) http://www.osirix-viewer.com/datasets/.

822 L.S. Chow et al. / Magnetic Resonance Imaging 34 (2016) 820–831
mock test was also performed where the subjects evaluated two sets
of MR images (two reference images with sixty two test images). In
the case where two similar reference images were shown on the
screen, if the subject did not rate them as ‘Excellent’ quality, this
subject would not be used for our study.

The subjective evaluation period should take less than 30 min for
each subject to avoid fatigue. Since there were a large number of MR
:

images to be evaluated, the evaluation was divided into three sessions
where the first two sessions contained eight sets of MR images (eight
reference images with 248 distorted images), and the third session
contained nine sets of MR images (nine reference images with 279
distorted images). The three sessions were conducted on three
consecutive days. There was no time constraint for the subjective
assessment; they took an average of 20 min for each session.

http://adni.loni.usc.edu
http://www.osirix-viewer.com/datasets/


Table 1
Summary of all distortions applied to the reference MR images.

Distortion type Description Distortion levels

Rician Noise Rician Noise Probability Density Function (PDF) with standard deviation, σR. σR: 5, 15, 25, 35, 45
Gaussian White Noise Gaussian White Noise distribution with standard deviation, σN. σN: 4, 11, 18, 30, 50
Gaussian Blur 3σ sized square kernel window with Gaussian kernels of standard deviation, σGB. σGB: 1.5, 3, 4.5, 6, 7.5
Discrete Cosine Transform (DCT) Two dimensional (2-D) DCT with compression rates at bits per pixel (bpp). bpp: 0.1, 0.8, 1.5, 2.2, 2.9
JPEG Compression Lossy compression technique which uses 8 × 8 DCT encoded with a quality setting varies

between 0 and 100. A higher quality setting produces better image quality.
Quality: 1, 7, 13, 19, 25

JPEG2000 Compression Advanced image compression technique using wavelet transform. A higher compression ratio
produces lower image quality.

Compression Ratio: 25, 50, 75, 100, 125
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2.4. Data processing

The first step of data processing was to check on any unqualified
subject scores using outlier detection and subject rejection algorithm
based on the ITU-R BT.500-11 recommendation [27]. Mean score, μ k̅ ,
is calculated using Eq. (1):

μk ¼
1
N

XN
i¼1

μ ik ð1Þ

where μik is the score given by ith observer for kth image and N is
the number of observers. It is recommended to present all the mean
scores at 95% confidence interval represented by ½μk−δk; μk þ δk �
where δk ¼ 1:96 Skffiffiffi

N
p , and Sk is the standard deviation for each image:

Sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

μk−μ ikð Þ2
N−1ð Þ

vuut ð2Þ

β2 test is used to verify whether the scores have a normal distribution.
This test isdonebycalculating thekurtosis coefficient,β2k,which is theratio
of the fourth order moment to the square of the second order moment:

β2k ¼
m4

m2ð Þ2 where mx ¼
XN

i¼1
μ ik−μ ikð Þx
N

ð3Þ

If the β2 is between 2 and 4, the distribution is considered normal.
The pseudocode for the outlier detection and subject rejection
algorithm is given below [27].

For each observer, i:

where Pi and Qi are counters which are used to determine the
rejection based on the condition given in the last line of the pseudocode.
After all the raw scores were tested with the above outlier
detection and subject rejection algorithm, the qualified raw scores
were used to calculate the DMOS values. DMOS measures the
perceived relative quality of the degraded images based on the
reference image [30]. Sheikh et al. and Thorpe et al. proved that
DMOS is a good representation of raw scores obtained from the
subjective evaluation [9,31]. In this study, the DMOS was calculated
using [32]:

D ¼ zk−min zkð Þ
max zkð Þ−min zkð Þ � 100 ð4Þ

where zk is the averaged Z scores across all subjects for kth image.
The DMOS values range from 0 to 100, where a lower value
represents higher image quality and vice versa.

Next, thirteen FR-IQA scores were calculated using the original
reference image and each distorted image. The chosen FR-IQA
metrics are SNR [33], PSNR [33,34], SSIM [35], MS-SSIM [35], FSIM
[36], IFC [37], NQM [38], WSNR [38], VIF [39], VIFP [39], UQI [40],
IW-PSNR [41] and IW-SSIM [41]]. The formulas and brief description
of these FR-IQAs are given in Appendix A.
2.5. Performance metrics

We used three types of performance metrics to validate the
DMOS values in this study: logistic regression, correlation coefficient
and RMSE (refer Appendix B for all the formulas of these
performance metrics). A nonlinear regression for the objective
scores is constructed using a logistic regression function. It provides
nonlinear mapping between the objective and subjective scores [42],
which can be plotted on a graph for visual inspection and
comparison between the subjective data points and computed
objective scores.

Relationship between two datasets can be measured statistically
using correlation coefficient. According to Taylor R. [43], two
datasets are said to have high correlation if the correlation coefficient
values are between 0.68 and 1.0. Three types of correlation
coefficients (PLCC, SROCC and KROCC) were used in this study to
measure the relationship between the subjective (DMOS) and
objective (FR-IQA) scores. PLCC, also known as Pearson product–
moment correlation coefficient, is used to evaluate the accuracy of
the prediction. SROCC and KROCC are the nonparametric versions of
PLCC, and do not require datasets that have been mapped
nonlinearly as they operate only on the rank of the data points and
ignore the relative distance between data points [36]. They evaluate
the prediction monotonicity of the FR-IQA metrics. RMSE is a
standard statistical metric used to evaluate the performance of a
model and the consistency of the prediction.
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2.6. Statistical testing

We used one sided Student's T-test at 95% confidence level to
perform the statistical testing between all the FR-IQA metrics for
different types of distortions and different types of anatomical
images. To test for the different types of distortion, first, we
calculated the residual between the DMOS and each FR-IQA scores
(after logistic regression) for each type of distortions. A small
residual means a small difference between the DMOS and a
particular FR-IQA scores, and vice versa. Therefore, a smaller residual
also represents a superior choice of FR-IQA metric. The T-test was
calculated between the residual of an X1–DMOS and another X2–
DMOS, where Xi ∈ {FSIM, IFC, IWPSNR, IWSSIM, MSSIM, NQM, PSNR,
SNR, SSIM, UQI, VIF, VIFP, WSNR}, for example, between residual of
FSIM-DMOS and residual of IFC-DMOS.

The T-tests were conducted twice (left-tailed and right-tailed)
for each pair of X1–X2 on each type of distortion. The null
hypothesis is that both residuals of X1–DMOS and X2–DMOS have
equal mean and equal variance, which means X1 and X2 are
indistinguishable and this is recorded as symbol ‘-’ in Table 3. The
alternative hypothesis of the left-tailed T-test is that the mean of
the residual of X1–DMOS is less than themean of the residual of X2–
DMOS. In other words, X1 is superior to X2. This is recorded as
symbol ‘1’ in Table 3 where X1 is written in the row and X2 is
written in column. On the other hand, the alternative hypothesis of
the right-tailed T-test is that the mean of the residual of X1–DMOS
is greater than the mean of the residual of X2–DMOS. In other
words, X1 is inferior to X2, which is recorded as symbol ‘0’ in Table 3.
There are six symbols for each entry of X1–X2 in Table 3, each symbol
representing the result for different types of distortion, arranged in the
following order: Rician Noise, Gaussian White Noise, Gaussian Blur,
DCT, JPEG and JPEG2000.

The above T-test is repeated to investigate the efficiency of 13
FR-IQAs across different types of MR images (T1W, T2W, PD) with
different field strengths (1.5 T and 3.0 T). The T-test results are
recorded in Table 5, where each entry contains 6 symbols
representing different types of images arrange in the following
order: 1.5 T T1W, 1.5 T T2W, 1.5 T PD, 3.0 T T1W, 3.0 T T2W, and
3.0 T PD.

3. Results

According to the outlier detection and subjective rejection
algorithm, no subject was rejected. In other words, all the subjects
were in an alert condition during the image evaluation session over
the three sessions. Hence, they were able to give a fair rating within
acceptable range recommended by ITU-R BT.500-11 [27]. Therefore,
all the human ratings were used for the DMOS calculation.

The scatter plots for the DMOS versus the standard deviations,
σR, σN and σGB for Rician Noise, Gaussian White Noise and
Gaussian Blur are shown in Fig. 2(a)–(c), respectively. The
scatter plot for the DMOS versus DCT compression rate is shown
in Fig. 2(d), DMOS versus JPEG quality is in Fig. 2(e), DMOS versus
JPEG2000 compression ratio is in Fig. 2(f). For those images
distorted with the Rician Noise, Gaussian White Noise and
Gaussian Blur, the higher the standard deviation of the noise or
blur, the poorer the resulted image quality, represented with
higher DMOS values. The lower the DCT compression rate or JPEG
compression quality, the poorer the resulting image quality. On
the other hand, the higher the JPEG2000 compression rate, the
poorer the resulting image quality.

Fig. 2(a)–(c) shows that the DMOS values increase with the
increase in the standard deviation of the noise as expected. It means
a poorer image has a higher DMOS value and this agrees with the
theory. In Fig. 2(d), it is apparent that the subjects were only able to
identify a low bit rate compressed DCT images. But, as the bit rate
increases from 1.5 bpp onwards, majority of the subjects were not
able to differentiate the image quality, resulting in a wide range of
DMOS values, i.e. 38–100 at 2.9 bpp. Fig. 2(e) shows a trend of the
DMOS values decrease as the compression quality increases. Yet,
there is a wide range of the DMOS values when the quality level is
more than 13, indicating that the subjects were not able to
differentiate the images at higher compression quality levels.
Fig. 2(f) shows an even wider range of the DMOS values across all
JPEG2000 compression ratios.

Table 2 records the values of PLCC, SROCC, KROCC and RMSE,
between DMOS and the thirteen FR-IQA metrics. As the correla-
tion coefficient values approach 1, the closer are the subjective
DMOS scores to the objective FR-IQA scores. All the PLCC and
SROCC values are more than 0.68, except the one between DMOS
and UQI with DCT distortion, which is 0.678 but still close to 0.68.
Therefore, by referring to Taylor et al. [43], we may conclude that
there is a high correlation between DMOS and the thirteen FR-IQA
metrics. As shown in Table 2, most of the KROCC values between
DMOS and FR-IQAs have a moderate correlation, and they are
smaller than the PLCC and SROCC values. The lower KROCC values
were also observed in other studies between DMOS and FR-IQA
on natural images [36,41]. Therefore, the lower KROCC values
could be due to its computation accuracy in showing the
correlation. The RMSE values in Table 2 are in reasonable ranges
for all the FR-IQAs.

The subjective DMOS versus objective FR-IQA scores were plotted
for the six types of distortion: Rician Noise, Gaussian White Noise,
Gaussian Blur, DCT, JPEG and JPEG2000 compression. The graphs for
all the thirteen FR-IQA metrics have similar trend, hence only NQM
and UQI are shown in Figs. 3 and 4 respectively. These two FR-IQA
metrics were chosen because NQM has the highest mean correlation
coefficient values and the lowest mean RMSE values according to
Table 2. On the other hand, UQI has the lowest mean correlation
coefficient values and highest mean RMSE values. The nonlinear
fitting curve in Figs. 3 and 4 shows that the DMOS values decrease as
the FR-IQA scores increase.

Table 3 records the T-test results which investigate statistically
any difference among the 13 FR-IQA for different types of distortion.
These results are further summarized in Table 4 by recording the
frequencies of ‘1’ (means the superiority) for each FR-IQA and
classified according to the types of distortion. The numbers in Table 4
represent the frequencies of significant superiority of a FR-IQA
metric over the other 12 FR-IQAs. The last row in Table 4 records the
FR-IQA with the highest significant superiority for each type of
distortion, except Gaussian White Noise which is not clearly
distinguishable among several FR-IQAs. The superior IQAs are UQI
for Rician noise images, VIF for Gaussian blur images, NQM for both
DCT and JPEG compressed images, PSNR for JPEG2000 compressed
images. Other T-test results are shown in Table 5 which investigates
statistically the 13 FR-IQAs for different types of images and different
field strength of MRI scanners. Table 5 is summarized in Table 6,
showing the frequencies of superiority for each type of FR-IQA in
each type of images and field strength. In Table 6, the superior IQAs
are PSNR for 1.5 T PD images, and MSSIM for 3.0 T T1W images. The
rest of the image types have no clear distinction in terms of the
performance of FR-IQA.

4. Discussion

Rician Noise and Gaussian White Noise cause the low contrast
object to be less visible [44], thus affecting the visual quality of the
MR images. Gaussian blurring causes small objects and fine details to
be less visible [45]. In DCT, JPEG and JPEG2000, the artifacts caused
by the compression are not clearly seen by human eyes [25,26,46].



Fig. 2. DMOS values versus: (a) σR of Rician Noise, (b) σN of Gaussian White Noise, (c) σGB of Gaussian Blur, (d) compression rate (bpp) of DCT, (e) quality of JPEG, and (f)
compression ratio of JPEG2000.

Table 2
PLCC, SROCC, KROCC and RMSE values between DMOS and 13 FR-IQA metrics, for six types of distortion.

Distortion FSIM IFC IWPSNR IWSSIM MSSIM NQM PSNR SNR SSIM UQI VIF VIFP WSNR Mean

PLCC RN 0.949 0.914 0.958 0.925 0.937 0.962 0.958 0.956 0.922 0.866 0.950 0.948 0.938 0.937
GWN 0.943 0.913 0.949 0.922 0.935 0.937 0.948 0.963 0.935 0.862 0.943 0.941 0.951 0.934
GB 0.898 0.913 0.875 0.881 0.895 0.911 0.839 0.821 0.856 0.857 0.891 0.907 0.826 0.875
DCT 0.923 0.781 0.873 0.825 0.852 0.956 0.851 0.887 0.824 0.678 0.847 0.868 0.845 0.847
JPEG 0.907 0.839 0.870 0.823 0.797 0.935 0.765 0.879 0.785 0.788 0.853 0.894 0.908 0.849
JP2K 0.903 0.828 0.819 0.820 0.791 0.913 0.779 0.901 0.796 0.788 0.813 0.867 0.879 0.838
Mean 0.921 0.865 0.891 0.866 0.868 0.936 0.857 0.901 0.853 0.807 0.883 0.904 0.891

SROCC RN 0.929 0.882 0.935 0.888 0.904 0.953 0.942 0.941 0.893 0.828 0.921 0.925 0.923 0.913
GWN 0.941 0.904 0.927 0.908 0.925 0.934 0.926 0.960 0.926 0.853 0.923 0.935 0.984 0.927
GB 0.918 0.921 0.859 0.917 0.907 0.934 0.833 0.839 0.814 0.870 0.893 0.921 0.865 0.884
DCT 0.925 0.850 0.883 0.861 0.882 0.951 0.853 0.899 0.820 0.758 0.881 0.905 0.908 0.875
JPEG 0.913 0.840 0.869 0.827 0.793 0.940 0.776 0.894 0.780 0.800 0.851 0.900 0.917 0.854
JP2K 0.910 0.825 0.824 0.822 0.795 0.917 0.781 0.899 0.796 0.783 0.815 0.870 0.880 0.840
Mean 0.923 0.87 0.883 0.871 0.868 0.938 0.852 0.905 0.838 0.815 0.881 0.909 0.913

KROCC RN 0.774 0.697 0.771 0.697 0.718 0.813 0.785 0.792 0.71 0.627 0.741 0.748 0.756 0.741
GWN 0.785 0.721 0.754 0.725 0.749 0.774 0.756 0.82 0.753 0.650 0.749 0.771 0.801 0.754
GB 0.769 0.759 0.670 0.755 0.740 0.781 0.654 0.645 0.626 0.691 0.725 0.765 0.668 0.711
DCT 0.773 0.666 0.707 0.685 0.709 0.823 0.673 0.737 0.637 0.573 0.713 0.741 0.742 0.706
JPEG 0.737 0.632 0.674 0.613 0.579 0.782 0.575 0.721 0.573 0.608 0.649 0.717 0.746 0.662
JP2K 0.729 0.63 0.622 0.622 0.587 0.747 0.575 0.734 0.592 0.596 0.612 0.679 0.715 0.649
Mean 0.761 0.684 0.700 0.683 0.680 0.787 0.670 0.742 0.649 0.624 0.698 0.737 0.738

RMSE RN 9.279 11.902 8.391 11.169 10.247 8.036 8.381 8.624 11.384 14.679 9.211 9.311 10.205 10.063
GWN 8.109 9.901 7.653 9.432 8.598 8.470 7.702 6.560 8.597 12.303 8.053 8.223 7.516 8.547
GB 7.862 7.284 8.058 8.449 7.979 7.380 9.713 10.213 9.252 9.205 8.110 7.517 10.071 8.546
DCT 5.409 8.778 6.858 7.944 7.350 4.132 7.379 6.484 7.953 10.327 7.474 6.983 7.509 7.275
JPEG 10.002 12.940 11.746 13.506 14.367 8.420 15.312 11.341 14.740 14.944 12.422 10.664 9.978 12.337
JP2K 10.174 13.294 13.609 13.558 14.500 9.685 14.863 10.285 14.352 14.596 13.795 11.802 11.308 12.755
Mean 8.473 10.683 9.386 10.676 10.507 7.687 10.558 8.918 11.046 12.676 9.844 9.083 9.431

RN = Rician Noise, GWN = Gaussian White Noise, GB = Gaussian Blur, DCT = Discrete Cosine Transform, JP2K = JPEG2000.
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Fig. 3. DMOS versus NQM scores for (a) Rician Noise, (b) Gaussian White Noise, (c) Gaussian Blur, (d) DCT, (e) JPEG, and (f) JPEG2000.

Fig. 4. DMOS versus UQI scores for (a) Rician Noise, (b) Gaussian White Noise, (c) Gaussian Blur, (d) DCT, (e) JPEG, and (f) JPEG2000.

826 L.S. Chow et al. / Magnetic Resonance Imaging 34 (2016) 820–831



Table 3
Statistical T-test results between the residuals of X1–DMOS and residuals of another X2–DMOS, where Xi ∈ {FSIM, IFC, IWPSNR, IWSSIM, MSSIM, NQM, PSNR, SNR, SSIM, UQI, VIF
VIFP, WSNR}. Each entry contains 6 symbols which are the T-test results for each type of distortion arranged in the following order: Rician Noise, Gaussian White Noise, Gaussian
Blur, DCT, JPEG and JPEG2000. Symbol ‘1’ means that the IQA in the row is statistically superior to the IQA in the column. Symbol ‘0’ means that the IQA in the row is statistically
inferior to the IQA in the column. Symbol ‘-’ means that both IQAs in the row and column are statistically indistinguishable.

FSIM IFC IWPSNR IWSSIM MSSIM NQM PSNR SNR SSIM UQI VIF VIFP WSNR

FSIM - - - - - - - 0 0 - - - - 0 0 - - - - 0 - - 1 - - 0 - - 1 - 1 - - 0 - - - 0 - - 1 0 - - 1 1 - - - 0 0 - - - 0 0 1 1 - - - 0 0–1 - - 0 - - - - - - 1 1 - -
IFC - 1 1 - - - - - - - - - - - - - - - - - 1 0 1 - - - 1 0 1 - 1 1 1 0 0 - - - 1 – 1 0 - 1 1 1 - - - - 0 - - - - - 1 1 - - - - 0 0 - - - - - - - - - 0 1 - - -
IWPSNR - 1 1 - - - - - - - - - - - - - - - - - 1 – 1 1 - - 1 – 1 1 1–1 0 0 1 - - 1 – 1 0 - 1 1 1 - - - - - - - - 0–1 1–1 - - 0 - - - - - - - - - - - 1 1–1
IWSSIM - 1 - - 0 - - - 0 1 0 - - - 0 – 0 0 - - - - - - - - - - 1 - 1 1 - - 0 - - - - - - 0 - 1 1 1 0 - - - 0 - 0 - - - 1 1 0 - - - 0 - - 0 - - 0 - 0 - - 1 1 1 0 -
MSSIM - 1 - - 0 - - - 0 1 0 - - - 0 - 0 0 - - - - 0 - - - - - - - - 1 - - 0 - - - - - 0 0 - 1 1 1 0 - - - 0 - 0 - 0–1 1 0 - - - 0 - 0 0 - - - - 0 - - 1 1 1 0 -
NQM 0 - - 1 - - 0 0 0 1 1 - 0–0 1 1 0 0 0 - - 1 - - 0 - - 1 - - - - - - - - 0 - - 1 0 - - 1 1 - - 0–0 - 1 - 0 0 1 1 1 - 0–0 - 1 0 - 0 – 1 - - - - 1 1 - -
PSNR - 1 - - 0 1 - - 0 – 0 1 - - 0 – 0 1 - - - - - 1 - - - - 1 1 - 1 - - 0 1 - - - - - - - 1 1 1 0 1 0–0 - 0 1 0–1 1 0 1 - - 0 - - 1 - - - - 0 1 - - 1 1 0 1
SNR - - 0 0 - - - 0 0 0 - - - 0 0 0 - - - 0 0 0 1 - - 0 0 0 1 - - - 0 0 - - - 0 0 0 1 0 - - - - - - 0 0 0 0 - - 0 0–1 - - - 0 0 0 1 - - 0 0 0 - - - - - - - -
SSIM - 1 1 - - - - - - - - - - - - - - - - - 1 – 1 - - - 1 – 1 - 1–1 – 0 - 1–1 - 1 0 1 1 1 1 - - - - - - - - - - 1 1 - - - - - - - - 1–1 - - - - - 1 1 - -
UQI 1 1 0 0 - - - - 0 0 - - 1–0 0–0 - - 0 0 1 - 1–0 0 1 - 1 1 0 0 0 - 1–0 0 1 0 1 1–0 - - - - 0 0 - - - - - - - - 1–0 0 - - 1–0 0 - - 1 1–0 - -
VIF - 1 1 - 0 - - - 1 1 - - - - 1 - - - - - 1 - - 1 - - 1 – 1 1 1–1 – 0 1 - - 1 - - 0 - 1 1 1 0 - - - - - - - 0–1 1 - - - - - - - - - - 1 - 0 - - - 1 1 0 -
VIFP - 1 - - - - - - - - - - - - - - - - - - 1 – 1 - - - - - 1 - - 1 – 0 - - - - - - 1 0 - 1 1 1 - - 0–0 - - - 0–1 1 - - - - 0 - 1 - - - - - - - - - 1 1 - -
WSNR - - 0 0 - - - 0 0 - - - - - 0 0–0 - 0 0 0 1 - - 0 0 0 1 - - - 0 0 - - - - 0 0 1 0 - - - - - - - - 0 0 - - 0 0–1 - - - - 0 0 1 - - - 0 0 - - - - - - - -
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Therefore, the differences between the reference and distorted
images with Gaussian Blur, or DCT, JPEG and JPEG2000 compressions
are very subtle and may not be noticed by human eyes. This fact is
further proven by the scatter plots of DMOS versus DCT, JPEG and
JPEG2000 compression in Fig. 2(d)–(f) where there is awide range of
DMOS values irrespective of the levels of compression. Refer to
Table 2, the DCT, JPEG and JPEG2000 distortion show lower mean
values of correlation coefficient, indicating a slightly bigger gap
between the subjective and objective ratings on images distorted
with these kinds of compression. Nevertheless, it also means that
these compressions are able to produce good images unnoticeable by
human even after being subjected to high compression rate. Thus,
these compressions are suitable to compress a wide range of MR
images[21–26]. For these three types of compressions, we recom-
mend to use the objective assessment to evaluate the image quality
because our results showed that the human eyes are not able to
differentiate the compressed images.

In Table 2, we observe that NQM has the highest mean value of
correlation coefficients (PLCC, SROCC and KROCC) and lowest mean
Table 4
Summary of the T-test results from Table 3, classified according to the types o
distortion, accessed by 13 FR-IQA metrics. The numbers in each entry represent the
frequencies of significant superiority of a FR-IQA metric over the other 12 FR-IQAs.

Types of Distortion

RC GWN GB DCT JPEG JP2K

FSIM 1 0 3 3 4 0
IFC 1 4 7 2 3 0
IWPSNR 1 2 7 3 3 5
IWSSIM 1 4 3 4 1 0
MSSIM 0 4 3 4 0 0
NQM 0 0 3 7 8 0
PSNR 0 3 3 3 1 12
SNR 0 0 1 1 4 0
SSIM 4 2 9 3 3 0
UQI 9 4 1 0 3 0
VIF 1 2 10 4 1 3
VIFP 0 3 4 3 4 0
WSNR 0 0 1 1 4 0
Superior IQA UQI - VIF NQM NQM PSNR
f

,

value of RMSE as compared with DMOS. In other word, NQM is the
closest FR-IQA metric to human judgement compared to other
FR-IQA metrics used in our study. NQM evaluates the image quality
based on image degradation model, and it separates the impact of
frequency distortion and noise injection on Human Visual System
(HVS). It was proven to be an excellent IQA to assess the image
quality on natural images [47]. On the other hand, UQI has the lowest
mean value of correlation coefficients (PLCC, SROCC and KROCC) and
the highest mean value of RMSE with DMOS. This indicates that UQI
is the least similar to the human judgment, which was also reported
by Wang et al. who verified that UQI is an unsuccessful FR-IQA
method that fails to correlate with all the subjective assessment [35].
Besides that, UQI is unstable when the mean and standard deviation
of the image intensity are close to zero [35,47].

The results of the statistical significance testing in Table 4
classified according to the types of distortion gave a different result
from the above. According to Table 4, the superior IQAs tested
statistically are UQI for Rician noise images, VIF for Gaussian blur
images, NQM for both DCT and JPEG compressed images, PSNR for
JPEG2000 compressed images. Nevertheless, a statistically superior
IQA of a certain distortion may be computationally inferior for
different types of images. The statistical test may also vary with the
amount of tested images. It was reported that 100 sample points will
only provide 50% chance of detecting the difference between the
performance of two IQAs; whereas 200 samples points will increase
the chances to 75% [48]. In our first T-test to study the performance
of FR-IQAs over different types of distortion, there were 125 sample
points. Therefore the probability of detecting the difference between
two IQAs is between 50% and 75% in our study. In the second T-test to
study the performance of FR-IQAs over different types of image, the
sample points vary from 30 to 200 due to unequal selection of image
types. As a result, we are not able to find the best performed FR-IQA
for each types of image, as summarized in Table 6.

In our study, the maximum score that represents excellent image
quality is 90 but not 100 because there is no gold standard to confirm
that theMR image is perfect enough to be rated as 100. The reference
images used in this study might be subjected to a small degree of
distortion. In fact, the FR-IQA metrics can only provide a relative
measure of the image quality for various distorted images compared
to the so-called ‘reference image’. Apparently, FR-IQA is not the
best way to evaluate MR images, but NR-IQA is more suitable for
MR images. However, there are many challenges in designing a



Table 5
Statistical T-test results between the residuals of X1–DMOS and residuals of another X2–DMOS, grouped according to different types of images. Each entry contains 6 symbols
which are the T-test results for each type of images arranged in the following order: 1.5 T T1W, 1.5 T T2W, 1.5 T PD, 3.0 T T1W, 3.0 T T2W and 3.0 T PD. Symbols ‘1’, ‘0’, ‘-’ are
explained in Table 3.

FSIM IFC IWPSNR IWSSIM MSSIM NQM PSNR SNR SSIM UQI VIF VIFP WSNR

FSIM - - - - - - - 1 1 0 1 0 - 1 - 0 1 1 0 1 1 0 1 - 0 1–0 - - 0–1 - - 1 0 1 - - - 1 0 - - - - 1 - 1 - 0 - 1 0 1 1 0 1 1 - 1 1 0 1 1 0 1 1 0–1 0 - - 0 1 -
IFC - 0 0 1 0 1 - - - - - - - - 0 - 0 1 - - 0 - - - 0–0 0 0 1 0 0 0 1 0 1 0–0 1 0 1 0 0 0 1 0 1 - - 0 1 0 1 0 - - - - - - - 0 - 0 1 - - 0 - 0 1 0 0 0 - - 1
IWPSNR - 0 - 1 0 0 - - 1 - 1 0 - - - - - - - - 1 0–0 0 - - 0 - 0 0 0 1 1 0 - - - - 1 0 - 0 0–1 0 - - - - 1 0 - 0 0 1 - - 0 - - 1 - - - - 0 1 - - - 0 0 - - - 0
IWSSIM 1 0 0 1 0 - - - 1 - - - - - 0 1–1 - - - - - - - - - - - - - 0 - 1 0 1 - - 0 1 0 1 0 0–1 0 1 1 - - 1 0 1 0–1 - - 0 - - - 1 - 1 - - - 1 0 1 0 0–1 - -
MSSIM 1 0–1 - - 1–1 1 1 0 1 - - 1 - 1 - - - - - - - - - - - - - 0 - 1 0 1 - - 0 1 0 1 0 0–1 0 1 1 - - 1 0 1 0–1 - - 0 1–1 1–1 - - 1 1–1 0 0–1 1 -
NQM 1–0 - - 0 1 1 1 0 1 0 1 1 0 0 1 - - 1 - 0 1 0 - 1 - 0 1 0 - - - - - - - 1 0 0 - - 0 - - - - 0 1 1–0 - - 0 1 1 0 1 0 1 1–0 1 0 - 1 1 0 1 0 0 - - 0 1 0
PSNR 1 0 - - - 0 1–1 0 1 0 - - - 0 1 - - - 1 0 1 0 - - 1 0 1 0 - 0 1 1 - - - - - - - - 0 0 1 - - 0 1–1 - - - 0–1 0 1 0 - - 1 0 1 0 - - 1 - 1 0 0 0 1 0 1 0
SNR 1 - - - - 0 1 1 1 0 1 0 1 1–0 1 - 1 1–0 1 0 1 1–0 1 0 1 - - - - 1 1 1 0 - - 1 - - - - - - 1 1 - - - 1 - 1 1 0 1 0 1 1 1 0 1 - 1 1 1 0 - - - - - 0 1 0
SSIM - 0 - 1 - 0 - - 1 0 1 0 - - - 0 1 - 0 - - 0 1 0 0 - - 0 1 0 0 0–1 - - 0–0 - - - 0 0 - - - 0 - - - - - - 0 0 1 0 1 0 - - 1 0 1 0 0 0 1 - - - 0 0 - - 1 0
UQI 1 0 0 1 0 0 1 - - - - - 1 1 0 - - 1 1–0 - - 1 1–0 - - 1 1 0 0 1 0 1 1–0 1 0 1 - 0 0 1 0 1 1 1 0 1 0 1 - - - - - - 1 1 0 - - 1 1–0 1 0 1 - 0 0 - - 1
VIF - 0 0 1 0 0 - - 1 - 1 0 - - 0 - - - - - - 0 - 0 0–0 0–0 0 0–1 0 1 - - 0 1 0 1 0 0 0 1 0 - - - 0 1 0 1 0 0 1 - - 0 - - - - - - - - - - - - 0 0 - - - 0
VIFP 1 0 0 1–0 - - 1 - 1 0 - 1 0 - - - - - - 0 1 0 - - 0 0–0 - 0 0 1 0 1 - - 0 - 0 1 0 0 0 1 - - 1 1 0 - - - 0–1 0 1 0 - - - - - - - - - - - - 0 0 0–1 0
WSNR 1 - - 1 0 - 1 1 1 - - 0 1 1 - - - 1 1 1–0 - - 1 1–0 0 - 1 - - 1 0 1 1 1 0 1 0 1 - - - 1 0 1 1 1 - - 0 1 - 1 1 - - 0 1 1 - - - 1 1 1 1–0 1 - - - - - -
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suitable NR-IQA method for medical images with complex geomet-
rical structure of human anatomy and scanning artifacts due to
various reasons.

To the best of our knowledge, we have presented the largest
study of subjective assessment of MR images distorted with six types
of distortion. And we have produced the MR database for IQA study,
which consists of 25 original reference MR images and 750 distorted
images, along with their DMOS values evaluated by 28 volunteers.
This will add up to a total of 21,700 human evaluations onMR images
for various anatomical human parts with various distortion types
and levels. The DMOS values consist of the human judgment on
various distorted images, which could be useful in calculating the
image features of the MR images. Therefore, it will be used for our
future study in designing a suitable NR-IQA metrics for MR images.
5. Conclusion

We have presented a database of 775 MR images inclusive of 25
reference images and 750 distorted images with six types of
Table 6
Summary of the T-test results from Table 5, classified according to the types of image
and MRI field strength, accessed by 13 FR-IQA metrics. The numbers in each entry
represent the frequencies of significant superiority of a FR-IQA metric over the othe
12 FR-IQAs.

Types of Image

1.5 T
T1W

1.5 T
T2W

1.5 T
PD

3.0 T
T1W

3.0 T
T2W

3.0 T
PD

FSIM 0 9 6 0 6 8
IFC 0 0 0 5 0 10
IWPSNR 0 0 6 5 1 0
IWSSIM 2 0 2 9 0 7
MSSIM 5 0 4 10 2 7
NQM 5 9 3 0 8 0
PSNR 3 0 10 1 8 0
SNR 10 9 4 0 7 3
SSIM 0 0 4 2 7 0
UQI 10 3 0 6 0 10
VIF 0 0 2 5 1 3
VIFP 2 2 2 3 4 2
WSNR 10 9 3 4 0 7
Superior IQA - - PSNR MSSIM - -
r

distortion: Rician Noise, Gaussian White Noise, Gaussian Blur, DCT
compression, JPEG compression and JPEG2000 compression. The
database also contains the DMOS values calculated from the raw
scores obtained from the subjective evaluation on MR images. We
validated the subjective DMOS with thirteen objective FR-IQA
metrics with the high PLCC and SROCC values and low RMSE values.
Hence, the DMOS values calculated in our study are applicable for
our future study to model a new NR-IQA method.
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Appendix A
The table below contains all the formulas for the FR-IQA metrics used in this study. Let r(x,y) represent the reference image and t(x,y)
represent the distorted image. nx and ny are the size of the image in pixels across x and y dimensions.
No IQA Algorithm Description

1 Signal-to-Noise Ratio (SNR) [33] Ratio of average signal power to average noise power.

SNR ¼ 10log10
h ∑nx

1 ∑ny

1 ½rðx;yÞ�2

∑nx
1 ∑ny

1 ½rðx;yÞ−tðx;yÞ�2

i
(A.1)

2 Peak Signal-to-Noise Ratio (PSNR) [33,34] Ratio of peak signal power to average noise power.

PSNR ¼ 10log10
h

maxðrðx;yÞÞ2
1

nx :ny
:∑nx

1 ∑ny

1 ½rðx;yÞ−tðx;yÞ�2

i
(A.2)

3 Structural Similarity Index Metrics (SSIM) [35] Captures the loss in the structure of the image.

SSIM ¼ ð2μrμ tþC1Þð2σ rtþC2 Þ
ðμ2

r þμ2
t þC1Þðσ2

r þσ2
t þC2Þ (A.3)

where μr and μt are the mean intensity for the reference and distorted images respectively;
σr and σt are the standard deviation for the reference and distorted images respectively; σrt is estimated as:

σ rt ¼ 1
N−1∑

N

i¼1
ðri−μrÞðti−μ tÞ (A.4)

where C1=(K1L)2 and C2=(K2L)2 where L is the dynamic range of the pixels values (i.e. 255 for 8-bit
grayscale images, as in our case),
K1 = 0.01 and K2 = 0.03.

4 Multiscale SSIM (MS-SSIM) [35] Mean of SSIM that evaluates overall image quality by using a single overall quality.

MSSIM ðr; tÞ ¼ 1
M∑

M

j¼1
SSIMðr j; t jÞ (A.5)

5 Feature SIMilarity (FSIM) [36] A low-level feature based image quality assessment which used two types of features: Phase Congruency (PC)
and Gradient Magnitude (GM). Ω represents the whole image spatial domain.

FSIM ðr; tÞ ¼ ∑x∈ΩSLðxÞ:PCmðxÞ
∑x∈ΩPCmðxÞ

(A.6)

where
PCm(x)=max(PCr(x) .PCt(x)) (A.7)
SL=[SPC(x)]α[SG(x)]β (A.8)
where

SPC ðxÞ ¼ 2PCr ðxÞ:PCt ðxÞþT1

PC2
r ðxÞþPC2

t ðxÞþT1
(A.9)

SGðxÞ ¼ 2Gr ðxÞ:Gt ðxÞþT2

G2
r ðxÞþG2

t ðxÞþT2
(A.10)

6 Information Fidelity Criterion (IFC) [37] An information theoretic criterion for image fidelity where it uses the source and distortion models to compute
the mutual information between the reference and the distorted images.
IFC ¼ ∑

k∈subbands
IððrNk ;k; tNk ;kjsNk ;kÞÞ (A.11)

where rNk ,k denotes Nk coefficients from the Random Field (RF), rk of the kth subband; and similarly for tNk ,k

and sNk ,k (RF of positive scalar of reference image)
7 Noise Quality Measure (NQM) [38] A measure of additive noise. It is designed based on Peli's contrast pyramid.

NQMðdBÞ ¼ 10 log10ð
∑x∑yO

2
s ðx;yÞ

∑x∑yðOs ðx;yÞ−Is ðx;yÞÞ2
Þ (A.12)

where Os(x,y) and Is(x,y) represent the simulated versions of the model restored image and the
restored images, respectively.

9 Weighted SNR (WSNR) [38] Ratio of the average weighted signal power to the averaged weighted noise power.

WSNR ¼ 10 log10ð
∑ω1

∑ω2
jRðω1 ;ω2ÞCðω1 ;ω2Þj2

∑ω1
∑ω2

jTðω1 ;ω2ÞCðω1 ;ω2Þj2
Þ (A.13)

where C(ω1,ω2) is the lowpass CSF, and R(ω1,ω2) and T(ω1,ω2) are the discrete Fourier transform of the original and noise images,
respectively.

10 Visual Information Fidelity (VIF) [39] Measures image information by computing two mutual information quantities from the reference and distorted images.

VIF ¼ ∑ j∈subbands IðC
!N; j

; T
!N; j

jsN; j Þ

∑ j∈subbands IðC
!N; j

; R
!N; j

jsN; j Þ
(A.14)

where the subbands of interest are summed over, and T
!N; j

represents the subband in the test image, R
!N; j

represents the

subband in the reference image, C
!N; j

represents N elements of the RF Cj that describes the coefficient subband j, and so on.
11 Pixel Visual Information Fidelity (VIFP) [39] Pixel domain version of VIF. It uses scalar RF model, not vector version like VIF. (A.15)
12 Universal Image Quality Index (UQI) [40] Computes the loss of correlation, luminance distortion and contrast distortion in distorted image.

Q ¼ 4 σ rt rt

ðσ2
r þσ2

t Þ½ðrÞ
2þðtÞ2 �

(A.16)

wherer and t are the means of the reference and test image, respectively, and σr
2 and σt

2 are the standard deviations of the
reference and test image, respectively

σ rt ¼ 1
N−1∑

N

i¼1
ðri−rÞðti−tÞ (A.17)

13 Information Weighted PSNR (IW-PSNR) [41] Uses the Laplacian pyramid transform domain information content weights.

IW−MSE ¼ ∏
M

j¼1
½∑iω j;i ðr j;i−t j;iÞ2

∑iω j;i

�
β j

(A.18)

IW−PSNR ¼ 10 log10ðmaxðrðx;yÞÞ2
IW−MSE Þ (A.19)

where ωj ,i is the information content weight computed at the corresponding location, M is the number of scales and
βj is the weight given to the jth scale.



(continued)

No IQA Algorithm Description

14 Information Weighted SSIM (IW-SSIM) [41] Obtained by combining content weighting with MS-SSIM.

IW−SSIM ¼ ∑iω j;i cðr j;i ;t j;i Þsðr j;i ;t j;i Þ
∑iω j;i

(A.20)

where

cðr j;i; t j;iÞ ¼ 2σ rσ tþC2
σ2

r þσ2
t þC2

(A.21)

and

sðr j;i; t j;iÞ ¼ σ rtþC3
σ rσ tþC3

(A.22)

where σr and σt are the standard deviation for the reference and distorted images respectively; σrt is estimated as:

σ rt ¼ 1
N−1∑

N

i¼1
ðri−μrÞðti−μ tÞ (A.23)

where C1=(K1L)2 , C3=(K2L)2/2 where L is the dynamic range of the pixels values (i.e. 255 for 8-bit grayscale images, as in our
case), K1 = 0.01 and K2 = 0.03.
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Appendix B
The table below contains all the formulas for the performance metrics used in this study. D represents the DMOS values, Q is the original
objective scores calculated from the FR-IQA metrics, and Qr is the objective scores after regression.
No IQA Algorithm Description

1 Logistic Regression [9,36,49]:
Qr ¼ β1

�
1
2−

1
1þ expðβ2ðQ−β3ÞÞ

�
þ β4Q þ β5 (B.1)

where β1 ,β2 ,β3 ,β4 ,β5 are the regression model parameters. Optimal parameters, β are obtained using
nonlinear least squares.

2 Pearson Linear Correlation Coefficient (PLCC) [50]
PLCCðQr ;DÞ ¼ ∑n

i ðQri−Qr Þ∑
n
i ðDi−DÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ðQri−Qr Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i ðDi−DÞ2

q (B.2)

where Qr and D are the means for dataset Qr and D respectively.

3 SpearmanRankOrder CorrelationCoefficient (SROCC) [51] SROCCðQ ;DÞ ¼ 1− 6∑n
i¼1di

2

nðn−1 Þ (B.3)

where di is the difference between the ranks of each pair of values inQ andD; and n is the total number of data pairs.

4 Kendall Rank Order Correlation Coefficient (KROCC) [41]
KROCCðQ ;DÞ ¼ Nc−Nd

1
2NðN−1Þ (B.4)

where Nc and Nd represent the numbers of concordant (ordered in the same way) and discordant (ordered
differently) pairs in the data sets, respectively.

5 Root Mean Square Error (RMSE) [52] RMSEðQr ;DÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ðQri−Di Þ2
n

r
(B.5)

where n is the total number of data pairs.
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